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Abstract: This article explores the transformative potential of artificial intelligence (AI) tools across
the agricultural value chain, highlighting their applications, benefits, challenges, and future prospects.
With global food demand projected to increase by 70% by 2050, AI technologies—including machine
learning, big data analytics, and the Internet of things (IoT)—offer critical solutions for enhancing
agricultural productivity, sustainability, and resource efficiency. The study provides a comprehensive
review of AI applications at multiple stages of the agricultural value chain, including land use
planning, crop selection, resource management, disease detection, yield prediction, and market
integration. It also discusses the significant challenges to AI adoption, such as data accessibility,
technological infrastructure, and the need for specialized skills. By examining case studies and
empirical evidence, the article demonstrates how AI-driven solutions can optimize decision-making
and operational efficiency in agriculture. The findings underscore AI’s pivotal role in addressing
global agricultural challenges, with implications for farmers, agribusinesses, policymakers, and
researchers. This article aims to advance the evolving research and discussions on sustainable
agriculture, contributing insights that promote the adoption of AI technologies and influence the
future of farming.

Keywords: precision agriculture; artificial intelligence; value chain; sustainability

1. Introduction

The agricultural value chain includes activities ranging from farm production to
product logistics and sales of agricultural products to consumers, has traditionally involved
processes that are executed manually and are labor-intensive. Nevertheless, in the past few
decades, advancements in the field of technology have been undertaken throughout this
value chain, leading to improvements in productivity and efficiency, as well as enhanced
sustainability. Sustainability, in particular, emerges as a key goal, especially considering
the increasing population and the associated increase in the need for food supply and food
security. Technological innovations can play a key role in achieving these goals; among
these innovations, artificial intelligence (AI) has already been leveraged to transform
numerous processes within the agricultural value chain, ranging from crop selection and
disease detection, to resource use and logistics optimization [1,2]. AI, combined with
other technologies, such as the Internet of things (IoT) and robotics, may be exploited in
task automation, analysis of large data volumes, and the formulation of data-driven and
explainable recommendations, leading to the improvement of agricultural practices. In
turn, advancements in agricultural practices can underpin the goal of meeting the growing
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global demand for food and food safety [3,4], and assisting in tackling important challenges,
notably including climate change [5,6].

Climate change and environmental sustainability are closely related to the optimiza-
tion of resource use, including water, pesticides, and fertilizers. Towards this goal, data
sourced from sensors provide real-time information regarding the condition of the field,
the crops and surrounding factors (e.g., weather forecasts), and AI-based systems offer
recommendations on the actions that need to be taken; these actions can be executed
automatically (e.g., by automated irrigation systems) or manually [7,8].

The agricultural value chain comprises multiple steps, including the planning of field
use, sawing, cultivation, disease prevention, detection and treating, processing, storage,
transportation, and distribution of agricultural products. Each of these steps is inherently
complex and requires a substantial amount of expertise, while the diversity and interde-
pendence of these steps introduce additional barriers to the overall optimization of the
agricultural processes. AI systems provide a means to formulate optimal agricultural
process plans, streamlining the related processes, reducing waste, and improving value
chain efficiency both at the global level [9,10] and at the individual stage level [11–13].

This paper explores how AI can be effectively utilized in the context of the agricul-
tural value chain to improve productivity, sustainability, and profitability. The paper
considers the use of AI in agricultural processes including planning, resource management,
cultivation, disease identification, and yield prediction, aiming to systematically record
and analyze the contribution of AI to the agricultural value chain [14,15]. The results of
this study can be exploited by stakeholders such as farmers, agricultural cooperatives,
agribusinesses, and policy makers to gain insight into the use and the benefits of AI-based
technologies in the agricultural sector [16,17], supporting the improvement of agricultural
processes [18,19] and the achievement of global goals, including food safety [3,4] and
resilience to climate change [5,6]. Additionally, insights on the future use of AI applica-
tions in agriculture [9,20] are offered. These findings can be combined with insights and
experiences gained from real-world applications of AI-based methods in the agricultural
value chain, such as: (a) the Farmspace organization, which has deployed low-cost portable
AI-powered soil testing devices across more than 3000 farms, allowing farmers check their
soil’s health status and analyze its fertility on the field in real time [21]; (b) Demeter, an
AI-based speed-rowing machine, which performs mechanized harvesting on fields, opti-
mizing paths and avoiding obstacles [22]; the NetSens live data platform, which collects
information from agrometeorological stations and uses AI-based models and methods to
predict disease outbreaks and provide advice on the use of plant protection [23] with a
focus on vines [24]; and (d) the Nindamani the Weed Removal Robot, which autonomously
detects and segment the weeds from crop using artificial intelligence [25].

This article focuses on the following research objectives:

• RO1. To explore how can AI-based tools improve land use planning and crop selection
to enhance agricultural productivity and sustainability.

• RO2. To identify which are the most effective AI-driven strategies for optimizing re-
source management, including water use, fertilizer application, and energy efficiency.

• RO3. To determine and document how AI contributes to precision agriculture, partic-
ularly in optimizing planting schedules, irrigation, and crop monitoring.

• RO4. To highlight the potential benefits of AI in early disease detection and yield
prediction and establish whether these applications can contribute to the mitigation of
risks in agriculture.

• RO5. To survey how AI can be integrated into agricultural logistics to reduce waste,
improve efficiency, and enhance market access for farmers.

• RO6. To identify the future prospects for AI in transforming the agricultural value
chain, and the challenges that must be addressed to realize its full potential.

By pursuing these objectives, the article will provide a comprehensive overview of
the status and prospects of AI tools in agriculture, offering insights that are crucial for
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advancing the sector in a sustainable and efficient manner. The paper contributes to the
literature on the role of AI in agriculture (e.g., refs. [26–28]) in the following respects:

1. It comprehensively covers the agricultural cycle, from land usage planning and crop
selection to price prediction and logistics. This feature is unique among existing
surveys; for instance, ref. [26] does not cover land planning and crop selection, while
resource management is limited to irrigation and soil control, omitting areas such as
energy consumption.

2. It elaborates on the AI algorithms used for each stage of the agricultural production
cycle, while some other surveys explore only the application level (e.g., ref. [26]) or
provide only generic aspects of the AI-based process, e.g., image segmentation and
desired output [27];

3. It takes into account newly published research (mainly in the years 2023 and 2024).
4. We discuss challenges and limitations of AI-based approaches, including technical

challenges, economic and social barriers, and ethical considerations. This information
will allow stakeholders to prepare holistic implementation plans, which take into
account potential issues and include relevant mitigation plans.

The rest of the paper is structured as follows. Section 2 presents the data collection
method and process. Section 3 discusses how AI enhances land use planning and crop
selection in agriculture, enabling precise analysis of soil, weather, and topography. It
highlights AI’s role in optimizing agricultural practices and improving crop yields through
data-driven decisions. Section 4 focuses on AI’s impact on precision agriculture, detailing
its integration with drones, sensors, and robotics. AI optimizes planting, irrigation, and
crop monitoring, while also advancing autonomous farming technologies like AI-driven
planting and harvesting. Section 5 explores AI’s application in identifying and managing
plant diseases. It focuses on AI-powered image recognition and predictive modeling for
early disease detection, by presenting case studies which demonstrate the effectiveness
of AI in improving crop health. Section 6 outlines the role of AI in predicting crop yields
using weather and soil conditions, as well as historical data. Furthermore, it presents how
AI integrates yield predictions with market trends, aiding decision-making for farmers and
improving agricultural efficiency. Section 7 explores the importance of AI in forecasting
agricultural prices, using deep learning and machine learning models. More specifically,
it demonstrates how environmental, economic, and market data are combined in order
to accurately predict prices, as well as it presents the challenges and future prospects for
this research area. Section 8 outlines how AI manages to optimize agricultural logistics
such as transportation, storage, and distribution by including examples of waste reduction,
efficiency improvement, and market access facilitation for farmers through price prediction
and demand forecasting. Section 9 discusses the issues of the adoption of AI in agriculture,
including ethical concerns, such as data privacy and job displacement, economic barriers,
and various technical issues, by emphasizing the need for responsible AI integration.
Section 10 looks at emerging AI trends in agriculture, such as deep learning, blockchain,
and IoT. It discusses AI’s potential to enhance global food security and sustainability, and
the role of policies in supporting AI adoption while addressing key challenges. Section 11
presents examples of use cases for AI algorithms. In Section 12, we discuss the findings of
our survey and present the answers to the research objectives formulated above. Finally, in
Section 13 conclusions are drawn, research findings are summarized, and future research
directions are listed.

2. Data and Methods

The purpose of this paper is to survey the current situation and prospects for the
use of AI Tools in the agricultural value chain. The methodology used for identifying
relevant work follows the PRISMA approach (Figure 1), a rigorous and organized approach
for examining and synthesizing bibliographic resources published in the literature. The
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach
is a widely used framework to improve the transparency and quality of reporting in
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systematic reviews and meta-analyses. It was developed to ensure that systematic reviews
follow a consistent, rigorous, and transparent methodology, and to minimize biases in the
research process [29].
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Figure 1. PRISMA flowchart for the set of keywords on the use of AI Tools for the Agriculture
Value Chain.

In order to collect the bibliographic resources, publications focusing on the topic of the
paper, and the above listed research objectives in particular, were located and examined.
Selected important works served a double role: Firstly, they contributed to the material
pertaining to the research objectives addressed by this paper. Secondly, their reference
list used a list of additional resources to be examined. Scientific publication databases
constituted a key source for the identification of relevant publications. Both the Scopus
platform and Google Scholar were used in the context of this work. These platforms
provide higher coverage of scientific literature than the Web of Science platform [30–32].
While Google Scholar provides metadata of lower quality compared to Scopus, we decided
to include them in the data collection process since its database is a superset of that of
Scopus [33,34]. A considerable number of works were identified in both sources, and in
these cases the results from Scopus were utilized, due to their higher metadata quality.

Table 1 lists the basic sources used for data retrieval and for the identification of
additional sources.
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Table 1. Basic sources for data retrieval and for identification of additional sources.

Source Type Description Year of Publication Use

Scientific publication
Applying big data for intelligent
agriculture-based crop selection

analysis [35]
2019 Extracting data and identifying new

scientific publications.

Scientific publication
A comprehensive review of

agriculture irrigation using artificial
intelligence for crop production [27]

2022 Extracting data and identifying new
scientific publications.

Scientific publication
Application of artificial intelligence

(AI) and IoT in Agriculture: A
Systematic Literature Review [26]

2022 Extracting data and identifying new
scientific publications

Scientific publication Towards automatic field plant
disease recognition [28] 2022 Extracting data and identifying new

scientific publications.

Scientific publication
Machine Learning- and Feature

Selection-Enabled Framework for
Accurate Crop Yield Prediction [15]

2019 Extracting data and identifying new
scientific publications.

Scientific publication

Time Series Forecasting of Price
of Agricultural

Products Using Hybrid
Methods [36]

2021 Extracting data and identifying new
scientific publications

Scientific publication

Convergence of Distributed Ledger
Technologies with Digital Twins,

IoT, and AI for fresh food logistics:
Challenges and opportunities [37]

2023 Extracting data and identifying new
scientific publications

Database Scopus Extracting data using queries.

Database Google Scholar Extracting data using queries.

Internet Searching for programs
and directions.

Pertinent scientific papers were identified through the Scopus [38] academic database
by utilizing suitable search criteria (Table 2). To retrieve the results relevant to the goals
of this study, we formulated search queries as illustrated in the following table. Please
note that in the second query, the placeholder text keywords for the specific research objective
were appropriately substituted by suitable keywords that define the research objective
at hand, e.g., “disease recognition”, “logistics”, or “price prediction”. In all cases, the
papers were limited to those published in the last 10 years, so that they include the latest
developments in the relevant fields. Notably, most works retrieved have been published
since 2019, probably owing to the latest AI developments that enabled its more widespread
use, including the introduction of transformers [39].

Table 2. Search queries used to locate scientific publications in Scopus.

Description Query

Query for the articles on the topic of the paper.

TITLE-ABS-KEY ((ai OR (artificial AND intelligence) OR
(machine AND learning) OR (deep AND learning)) AND

(agriculture OR agricultural) AND (value AND chain)) AND
PUBYEAR > 2015

Query for the articles related to a specific research objective.

TITLE-ABS-KEY ((ai OR (artificial AND intelligence) OR
(machine AND learning) OR (deep AND learning))) AND

TITLE-ABS-KEY (keywords for the specific research objective)) AND
PUBYEAR > 2015
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A similar approach was used for retrieving results from the Google Scholar database;
however, due to the fact that Google Scholar does not allow the specification of the con-
straint that the search query elements must appear in the title, abstract or keywords, results
from Google Scholar were processed as follows:

• Firstly, it was verified whether the result had already been retrieved by a Scopus query;
if it had indeed been retrieved, the result was retained;

• Otherwise, the title, abstract, and keywords were read by the research team, to verify
that the search keywords were indeed present in these publication elements.

3. AI in Planning
3.1. Land Use Planning
3.1.1. AI-Based Tools for Analyzing Soil Quality, Weather Patterns, and Topography

AI-based tools are becoming indispensable in modern agriculture, particularly in land
use planning, where they offer advanced capabilities for analyzing critical factors such as
soil quality, weather patterns, and topography. These tools employ sophisticated machine
learning algorithms, big data analytics, and IoT-enabled sensors to process extensive
datasets from various sources, including remote sensing, soil samples, and historical
weather records. For instance, AI models like support vector machines (SVM) and decision
trees are utilized to predict soil health by analyzing key parameters such as pH levels,
organic matter content, and the availability of essential nutrients like nitrogen, phosphorus,
and potassium [7,40]. Relevant data are sourced by traditional manual analysis procedures
(soil collection and processing in the lab), or by employing modern, IoT-based methods,
e.g., hyperspectral sensors [41].

Moreover, AI tools allow farmers to simulate different scenarios related to climate
change, including droughts, floods, water shortage, and heatwaves, and prepare accord-
ingly, improving resilience and minimizing potential losses [2]. These tools incorporate
information from topographical data and hence can aid in the selection of suitable terrain
for specific crops, based on factors like slope, drainage, or microclimate variation. As
a result, by integrating data concerning high-resolution satellite images into AI-based
models, farmers are able to make decisions about the maximum potential of land yielding
allocation [18]. For example, NDVI (normalized difference vegetation index) measurements
from satellite image processing of soil and weather conditions have been proven to be very
effective for crop health estimation and yield prediction based on [1].

This methodology enables the reader to understand how environmental covariates
interact to improve spatial strategies in planting for yield performance more comprehen-
sively [13].

3.1.2. Optimal Crop Selection and Agricultural Practices

The use of AI applications allows farmers to choose the perfect crop and agricultural
practice for optimal results in agriculture, making it possible to obtain higher yields with
more sustainable practices. AI-based systems, such as the Crop Selection Method (CSM),
employ machine learning algorithms like gradient boosted decision trees (GBDT) and
random forests to draw insights from past performance of crops, such as yield measures.
By incorporating physical environmental data, agronomic traits (e.g., disease resistance
characteristics), and phenological attributes (e.g., duration of growth cycles), they are able
to recommend the varieties that are more likely to succeed under given soil and climate
dimensions, as well as optimal planting and harvesting schedules [7,40]. The work in [40]
also reports on the application of artificial neural networks (ANN) to the same goal, with
superior results as compared to SVM models. In particular, multiple ANN models were
tested, with general regression neural networks (GRNN) achieving the best results, with a
prediction accuracy equal to 92.86%, while SVM result accuracy was equal to 83%.

Similarly, the work in Shams et al. [18] develops an intelligence-based crop recom-
mendation system, namely XAI-CROP, which promotes transparency in the agriculture
assistive decision-making process. This system provides farmers with personalized crop
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recommendations using soil type information, regional weather patterns, and historical
crop yield data. By including explainable AI (XAI) techniques, XAI-CROP is able to pro-
vide recommendations that are not only accurate but also interpretable by farmers, thus
increasing not only the recommendation but also the adoption of the technology.

The use of AI tools in India has already proven to be a game-changer for the selection
of rice and wheat varieties. These methods are used to produce higher yields, improve
resistance to pests and invasive species of bacteria, and promote better acclimation with
the surrounding environment [42]. Such AI applications have been extended to crop
rotation planning, providing management strategies derived from models such as Deep
Q-Networks (DQNs) for creating sequences of crops. These sequences are based on either
economic returns or soil health, and hence perform better in nitrogen demand, sustainability
guidelines, etc. [1].

The success of AI applications is not limited to crop selection, but it is also extended to
agricultural practices in general. For example, combined decision-making tools that use
dominance-based raw set approaches (DRSA) and machine learning models have been
developed to support farms in selecting the most appropriate crops based on multiple
criteria, including soil characteristics, water availability, seasonal factors, etc.

In their study, Deepa and Ganesan [13] showed the effectiveness of such a tool, devel-
oped using DRSA dominance, in calculating the weights of various sub-variables, as well
as that of Johnson’s reduction algorithm when applied to generating classification rules for
crops such as paddy, sorghum, and sugar cane. The tool accurately predicted the best crop
in over 92% of cases, closely aligning with expert recommendations [13].

AI-based systems have also been particularly successful in enhancing crop diversity
and resilience, as they have the ability to process critical factors such as disease resistance,
adaptability to changing climate conditions, and market trends [8]. By incorporating sensor
networks and neural networks, such as multi-layer perceptrons (MLP), they assess the
suitability of land for different crops, classifying it into categories such as most suitable,
suitable, moderately suitable, and unsuitable. This classification enables farmers to make
data-driven decisions, driving their crops to higher yields and implementing more efficient
use of resources [43].

Also, the use of big data combined with IoT in intelligent agricultural systems has
proven effective in the accurate selection of crops that can be grown in specific environ-
mental conditions. According to his study, Tseng [35] showed how three-dimensional
cluster analysis can be used to group environmental factors and determine suitable crops
for specific farm conditions. This system not only monitors and analyzes soil and climate
conditions, but also provides useful information to farmers about what kind of crops are
most likely to prosper, thus improving agricultural results.

In Table 3 we summarize the AI algorithms used for land use planning and crop
selection. For each algorithm, the relevant use cases are listed, and the strengths and
limitations for each algorithm are given.

Table 3. AI algorithms used in land use planning and crop selection.

AI Algorithm Use Case Strengths Limitations

Machine Learning (General) Predicts optimal land use
and crop selection

Adaptable, scalable to
multiple scenarios Requires careful data curation

Gradient Boosted Decision
Trees (GBDT) [7,40]

Predicts land use efficiency
and crop suitability

High accuracy,
reduces overfitting

Slower to train on
large datasets

SVM [7,40]

Classifying land for optimal
use and crop suitability based

on factors like soil type,
climate, and terrain

High accuracy, works well for
small datasets, effective in
high-dimensional spaces

Computationally expensive
for large datasets,

difficult to interpret
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Table 3. Cont.

AI Algorithm Use Case Strengths Limitations

Random Forests [7,40]

Predicting optimal land use
and crop selection based on

soil, weather, and
historical data

Handles high-dimensional
data well, robust to

overfitting, interpretable

Requires large training
datasets, computationally
intensive for large models

Deep Q-Networks (DQNs) [1] Reinforcement learning for
land management

Learns from real-time
feedback, adaptive

Requires continuous
retraining

Dominance-based Rough Set
Approach (DRSA) [13]

Decision-making for land
allocation and crop selection

Handles uncertainty in
decision-making Sensitive to data quality

Multi-Layer
Perceptron (MLP) [43]

Neural network model for
crop prediction

Good for non-linear
problem-solving

Prone to overfitting,
hard to interpret

XAI-CROP [18] Explains AI decisions for
crop selection

Transparent,
explainable outcomes

Requires complex,
explainable models

Artificial Neural
Networks (ANN) [40]

Predicting optimal land
use and crop selection
based on soil, weather,

and historical data

High accuracy, can be used
with small datasets.

Multiple ANN models
and hyper-parameters

need to be tested.

3.2. Resource Management
3.2.1. Efficient Water Use, Fertilizer Application, and Energy Management

AI technologies are increasingly being used in optimizing resource management
in agriculture, particularly in the areas of water use, fertilizer application, and energy
management. AI-powered irrigation systems use real-time data from soil moisture sensors,
weather forecasts, and crop water needs to manage water resources more efficiently. This
ensures that crops receive the right amount of water at the right time, significantly reducing
wastage and improving crop health [8]. Also, corresponding models analyze the soil
nutrient profile and crop growth stages to determine the correct amount and ideal time
of fertilizer application. This approach maximizes crop yields but also minimizes the
environmental impacts associated with over-fertilization, such as nutrient runoff, soil
degradation, and water table stress [1].

In greenhouse applications, AI-based energy management systems are being devel-
oped to improve the use of heating, lighting, and ventilation and adjust these parameters in
response to real-time data. This results in significant reductions in energy consumption and
operating costs, while maintaining ideal growing conditions for the plants. For example,
AI systems developed in Dutch greenhouses have been shown to reduce energy consump-
tion by up to 15%, demonstrating the potential of AI to contribute to more sustainable
agricultural practices [13].

3.2.2. Case Studies or Examples of AI-Based Resource Management Systems

Numerous case studies have been developed that highlight the effectiveness of AI-
based resource management systems in agriculture. In Australia, they have successfully
implemented water management systems that, using AI, have led to significant water
savings and improved crop productivity. These systems use machine learning algorithms
to predict water needs and optimize irrigation schedules taking into account real-time soil
moisture data and weather forecasts [2].

Another example is the systems in Dutch greenhouses that are used to optimize energy
consumption by adjusting heating and lighting based on data from plant growth stages and
external environmental conditions in real time. This approach reduced the consumption
of electricity but also maintained the optimal growing conditions, thus highlighting the
effectiveness of AI in the management of energy resources in agriculture [13,18].

AI-based systems are used in organic agriculture, and they develop reinforcement
learning models by creating crop rotation sequences to optimize soil nitrogen levels, thereby



Electronics 2024, 13, 4362 9 of 36

improving long-term soil fertility and crop yields. These systems use real-time data to
ensure that rotations are aligned with economic and environmental sustainability goals,
making them essential tools for modern agriculture [1].

Also, a successful example is sensor-based AI models that have demonstrated sig-
nificant improvements in land suitability assessments in Tamil Nadu, India, leading to
more efficient water use and better crop yields. These AI systems integrate data from
various sensors in real time to optimize irrigation schedules while maintaining high levels
of productivity. Additionally, these systems have been proven to achieve high accuracy in
land classification, helping farmers optimize their resource use and crop productivity [43].

Another important case study is the platform developed by Tseng, which combined IoT
sensors with big data analytics to optimize crop selection and farm resource management
using appropriate AI models. This platform helped increase water use efficiency and
improved crop yields by providing real-time information and recommendations based on
continuous environmental monitoring [35].

All the aforementioned examples indicate the potential of AI to make agricultural
practices more sustainable and resource-efficient, thus contributing to the overall resilience
of the agricultural value chain.

In Table 4 we summarize the AI algorithms surveyed in this section in the context
of resource management. For each algorithm, the relevant use cases are listed, and the
strengths and limitations for each algorithm are given.

Table 4. AI algorithms used in optimization of resource management (water, fertilizers, energy).

AI Algorithm Use Case Strengths Limitations

Particle Swarm Optimization
(PSO) [44,45]

Water and Fertilizers
optimization for

efficient irrigation
Fast convergence, flexible Sensitive to initial conditions

Random Forest [46]
Predicts water/fertilizer
requirements based on

sensor data
High accuracy in predictions

Requires a large amount of
training data, may incur high

computation costs

Gradient Boosting
Machines (GBM) [47]

Fertilizer application
optimization based on crop

type and soil health
Accurate, robust to outliers Slow training times for

large datasets

Deep Learning
(CNNs, RNNs) [48]

Energy and water
usage prediction

Handles complex temporal
patterns (weather)

Requires significant
computational resources

4. AI in Cultivation
4.1. Precision Agriculture
4.1.1. The Role of AI in Precision Farming

AI plays a significant role in the evolution of precision farming, while its advanced
technologies, such as drones, sensors and robotics, significantly enhance the efficiency
and accuracy of agricultural practices. As far as drones are concerned, they include AI-
driven imaging systems, as well as hyperspectral, multispectral, and thermal cameras,
which enable them to capture real-time and detailed data concerning crop health, soil
conditions, and environmental variables across large agricultural fields (e.g., ref. [41]). The
high-resolution images taken are then processed by machine learning algorithms in order to
identify patterns and anomalies, a task which it would be difficult to effectively accomplish
using traditional methods [5,27]. For example, drones are able to monitor crop growth,
detect stress (e.g., due to pests or diseases), and evaluate moisture levels, thus providing
critical information that informs decision-making throughout the growing season.

Imagery data can be complemented by field condition data sourced from sensors
deployed throughout fields, which continuously measure environmental factors such as soil
moisture, pH levels, temperature, and nutrient availability. Diverse data sources are fused
in a unique data stream, which is fed into AI models that can predict crop needs in real time,
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enabling precise adjustments to irrigation, fertilization, and other inputs. Such systems
help in optimizing resource use, reducing waste, and minimizing the environmental impact
of farming practices [14].

Robotics, another key component of AI in precision farming, are designed to perform
repetitive tasks such as planting, weeding, and harvesting with unparalleled precision.
These robots are equipped with AI algorithms that enable them to navigate complex field
environments autonomously, making real-time decisions based on sensory data [14].

4.1.2. Benefits of AI in Optimizing Planting Schedules, Irrigation, and Crop Monitoring

The integration of AI into precision agriculture brings substantial benefits, particularly
in optimizing planting schedules, irrigation management, and crop monitoring. AI models
utilize vast datasets, including historical climate data and real-time weather forecasts, to
predict the optimal times for planting. By ensuring that crops are sown under the most
favorable conditions, farmers can significantly improve yield potential while mitigating
risks associated with weather variability [4].

In the area of crop monitoring capability enhancement, the studies in [49,50] report on
AI-based systems that process data from drones, sensors, and other monitoring technologies
using advanced machine learning algorithms to detect early signs of stress in crops, such
as disease onset, pest infestation, or nutrient deficiency. For instance, AI-powered systems
may analyze input data streams and use indications such as leaf color changes, shape
anomalies, or temperature modifications to identify potential disease outbreaks in a timely
fashion, even before these symptoms could be traceable through visual inspection. Early
diagnosis is extremely important, since it gives farmers the ability to measure fertilizers
and pesticides to selected farming areas, create effective strategies to preserve plant health
and avoid yield loss, etc.

Besides increasing operational efficiency, AI-enabled precision agriculture practices
also increase the sustainability of farming, by minimizing input utilization such as water,
fertilizers, and pesticides (and hence reduce environmental impacts across agricultural
activities) (c.f. Section 3). As AI technology further matures, its integration in precision
farming will grow and provide even more advanced means to handle intricate agricultural
systems [4].

In Table 5 we summarize the AI algorithms surveyed in this section, concerning the
optimization of planting scheduling, irrigation, and crop monitoring. For each algorithm,
the relevant use cases are listed, and the strengths and limitations for each algorithm
are given.

Table 5. AI algorithms used in optimizing planting schedules, irrigation, and crop monitoring.

AI Algorithm Use Case Strengths Limitations

SVM [51,52] Classifying crop
health conditions

High accuracy for binary
classification problems

Computationally expensive
on large-scale data

Long Short-Term Memory
(LSTM) [53,54]

Forecasting crop growth,
irrigation needs based

on weather

Effective for long-term
dependencies High computational cost

Recurrent Neural Networks
(RNNs) [55]

Predicting optimal planting
times based on weather and

soil data

Handles sequential data, good
for time-series forecasting

Difficult to train,
slow to converge

Convolutional Neural
Networks (CNNs) [56]

Image-based monitoring of
crops using drones/satellites

Excellent for pattern
recognition from images

Requires large amounts of
labeled data

4.2. Automation and Robotics
4.2.1. Use of AI in Autonomous Farming Machinery

The inclusion of AI in autonomous farming machinery is a major leap forward con-
cerning agricultural automation.
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Based on the observations they make, these AI-driven machines, equipped with
sensors, cameras, and GPS technology which enable them to navigate fields accurately and
act on the fly, are able to (semi-)autonomously undertake various agricultural tasks, such as
land preparation and planting, weeding, harvesting, etc. [14]. They are also equipped with
AI algorithms, enabling them to differentiate crops from weeds, check soil quality, and alter
their operations accordingly. Autonomous operation reduces the dependence of human
labor, which is crucial in areas of labor shortage, while it also leads to more consistent and
accurate task execution that delivers high productivity and lower operating costs [5].

4.2.2. Automated Planting, Weeding, and Harvesting

The high-sensitivity sensors and analysis tool of AI in implementing robotic planting
systems can also benefit them by examining soil properties, such as moisture content, tex-
ture, and compaction, during real-time operation. Based on this information, AI algorithms
are able to compute the optimal planting depth and spacing for seeds to facilitate the
process from germination to the early growth stage. This accuracy in seeding results in an
even crop emergence and thus maximizes yield potential [14].

As far as the weeding process is concerned, AI has enabled technology to develop
autonomous weeding robots with machine vision and deep learning algorithms that are
able to accurately distinguish between crops and weeds with a high level of precision. These
robots can accurately detect and remove weeds, even in high-density crop fields, without
damaging the crops. Implementing weed management—rather than brush application of
chemical herbicides—on all crops promotes more sustainable agricultural practices and
reduces the environmental impact of farming activities [5]. Furthermore, these weeding
robots are able to work around the clock, serving large indoor or outdoor farming areas
with a higher efficiency of weed control compared to that of human labor and traditional
chemical use.

AI is turning harvesting (which is one of the most labor-intensive jobs in agriculture)
into a task for machines. Extractor robots are AI-controlled robots equipped with sensors
and cameras, which enable them to investigate the maturity of natural products by an-
alyzing characteristics such as shape, size, and color. By using advanced AI algorithms,
these robots are able to determine the optimal time for harvesting, ensuring that only the
ripe products are selected. This approach manages to minimize waste, while at the same
time enhancing the quality and market value of the harvested crops [50,57]. Additionally,
the use of AI in harvesting also minimizes the reliance on seasonal labor (which is both
hard to rely on and costly) and provides consistent 24/7 operational capabilities leading to
increased productivity

The examples of AI in automated planting, weeding, and harvesting underscore the
transformative effect of AI on modern agriculture. By automating these crucial tasks, AI
not only enhances operational efficiency but also promotes sustainability and profitability
in agricultural practices. As AI technology continues to evolve, its role in agriculture
is anticipated to grow, providing increasingly sophisticated tools to manage complex
agricultural systems with greater precision and reduced environmental impact [14].

In Table 6 we summarize the AI algorithms surveyed in this section, concerning the
optimization of planting scheduling, irrigation, and crop monitoring. For each algorithm,
the relevant use cases are listed, and the strengths and limitations for each algorithm
are given.

Table 6. AI algorithms used in automated planting, weeding, and harvesting.

AI Algorithm Use Case Strengths Limitations

Convolutional neural
network [5] Target detection algorithm High accuracy

Large memory footprint, needs
considerable amount of

labeled data
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Table 6. Cont.

AI Algorithm Use Case Strengths Limitations

Faster R-CNN [50] Weed identification in maize,
sugar beet, and wheat crops

Operational efficiency,
accuracy

Degraded performance with
background clutter or noise in
images; need for large datasets

CNN [50] Weed classification in
22 different crops Classification accuracy Need for large datasets, high

computational requirements

RNN [57]. Weed identification
and classification Classification accuracy Vanishing and exploding

gradients in the learning process

5. AI in Disease Recognition
5.1. Disease Identification
5.1.1. AI-Powered Image Recognition Systems for Detecting Plant Diseases

AI-powered image recognition systems have become instrumental in identifying and
diagnosing plant diseases with high accuracy, particularly through the use of convolutional
neural networks (CNNs). These deep learning models automatically extract features from
images of plant leaves and classify them according to the type of disease. For example,
Mohanty trained a deep learning model to recognize 14 crop species and 26 crop diseases,
achieving an accuracy of 99.35% on the test set [12,58]. Similarly, Brahimi successfully
applied CNNs to classify tomato diseases with 99.18% accuracy [59], while Guo [60]
developed a multiscale AlexNet model on an Android platform for disease identification
from tomato leaves [20].

Recent advancements in these systems include the integration of techniques such as
background replacement and leaf resizing, which have significantly enhanced the robust-
ness of CNN models under real field conditions. For instance, the application of these
methods to the Field-PlantVillage dataset led to an accuracy improvement from 41.81%
to 72.03% [28]. Vision Transformers (ViT) have also been considered in AI systems as a
successful processing approach for images with complex backgrounds, such as the ones in-
cluded in the PlantDoc dataset. The PMF+FA technique, which combines few-shot learning
(FSL) with a feature attention module, was able to score over 90% accuracy on challenging
datasets, demonstrating its effectiveness in real-world scenarios [11].

Furthermore, the evolution of advanced models, such as the YOLOv5, has given even
more power to the AI-based image recognition systems. This model includes improvements
such as the InvolutionBottleneck and the SE modules. The first one is able to reduce
the computational overhead while gathering long-range spatial dependencies, while the
second one is able to improve the sensitivity of the model to different feature channels. The
inclusion of these modules to the YOLOv5 model resulted in significant accuracy increases,
achieving 86.5% accuracy for powdery mildew detection and 86.8% for anthracnose in
rubber trees [61,62].

The real-time monitoring and detection of crop diseases, using UAVs combined with
ground-based sensors, has been revolutionized by AI integrated robotic systems, as shown
above in the case of Agriculture 5.0. This supplementary method not only augments
the precision and endemics of interventions, but also identifies early symptoms that are
imperceptible to humans and thus helps to prevent large-scale crop losses [63].

5.1.2. Early Disease Diagnosis and Intervention

AI applications in early disease diagnosis play a crucial role in mitigating the spread of
disease and enhancing crop yields. These systems enable timely interventions, reducing the
need for chemical pesticides and preventing substantial crop losses. For instance, Kawasaki
developed a CNN-based system specifically designed to detect early disease symptoms
in cucumbers, achieving an accuracy of 94.9% [64]. Similarly, Xie demonstrated the use
of hyperspectral imaging combined with deep learning models for the early detection of
tomato leaf diseases, achieving a classification accuracy of 97.1% [65].
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Advanced techniques, such as few-shot learning (FSL) methods, have also proven
effective in early disease diagnosis, even when limited training data is available. For
example, the PMF+FA method achieved high accuracy in recognizing plant diseases,
with only five images per class, proving to be a very useful tool in dynamic agricultural
environments, where data may be scarce [28]. Furthermore, data augmentation techniques
in CNN models, including background replacement and leaf resizing, have improved early
disease detection in field conditions, enhancing accuracy while at the same time speeding
up intervention strategies [28].

The improved YOLOv5 model exemplifies the impact of AI on early disease diagno-
sis. Optimized for field conditions with varying light and background complexities, this
model has demonstrated an average precision of 86.5% for powdery mildew and 86.8% for
anthracnose in rubber trees. Such precision allows for timely and accurate interventions
that prevent the spread of diseases [61,62]. Similarly, the integration of AI and robotics in
Agriculture 5.0 facilitates the early detection of diseases through drones and ground-based
sensors, further enhancing the precision and timeliness of interventions [63].

Beyond specific examples, AI applications extend to various crops, including rice,
cucumbers, and apples, where early identification capabilities have proven highly effective.
For instance, AI models have accurately detected and classified rice diseases like rice blast
with over 95% accuracy, enabling timely interventions that support sustainable farming
practices [20].

5.2. Predictive Modeling
5.2.1. AI Models for Predicting Disease Outbreaks Based on Environmental and
Biological Data

AI models, and more specifically the ones applying deep learning and machine learn-
ing techniques, were developed for disease prediction by analyzing complex environmental
and biological data. These models are able to process external data, such as weather condi-
tions, soil health, and crop growth stages, in order to predict potential disease outbreaks.
For example, the combination of CNNs and long term memory (LSTM) networks has
proved to aid in proactive disease management strategies. More specifically, based on se-
quential environmental data, it is able to provide early warnings in plant disease prediction,
significantly reducing their spread and minimizing crop loss [12].

AI models, such as those using few-shot learning (FSL) and vision transformers
(ViT), show particular effectiveness in predicting disease outbreaks, even with limited
training data. For example, the PMF+FA method, has demonstrated high accuracy in
real-time disease prediction, enabling timely interventions that are crucial for plant health
management in dynamic agricultural environments [11].

The integration of these AI models, such as transfer learning and the improved
YOLOv5 model, has contributed to the improvement of predictive modeling in agriculture.
The YOLOv5 model, for example, utilizes the novel InvolutionBottleneck model not only to
achieve increased disease detection capabilities (cf. Section 5.1) but also to handle complex
datasets and predict disease outbreaks with high accuracy under natural conditions [61,62].
This model was tested on rubber diseases, where it achieved a mean average accuracy
(mAP) of 70%, demonstrating its practical application and effectiveness in real-time disease
management [61].

Therefore, predictive modeling using AI becomes essential to predict disease outbreaks
in various crops, including corn and wheat. Transfer learning has been particularly effective
in adapting models such as ImageNet to agricultural applications where data scarcity
is a challenge [20]. These AI-driven models can predict fungal infections in wheat by
analyzing weather patterns and soil conditions, thereby enabling more effective application
of fungicides and reducing crop losses [63].
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5.2.2. Case Studies of Successful AI Implementations in Disease Management

Several case studies have demonstrated the successful implementation of AI in dis-
ease management, highlighting the practical benefits of these technologies in real-world
agricultural scenarios. For instance, in managing tomato leaf diseases, a combination of
Faster R-CNN [66], SSD, and R-FCN architectures was employed to detect and classify
lesions with a mean average precision (mAP) of 85.98% [67]. Similarly, a custom deep
learning model developed by Li detected five types of apple leaf diseases under natural
conditions with an accuracy of 82.28%, outperforming traditional models like YOLOv3 and
Mask R-CNN [68].

In another notable case study, the PMF+FA method with vision transformers (ViT) [69]
as the backbone for feature extraction was tested on the PlantDoc dataset. This approach
outperformed traditional methods, achieving an average accuracy of 90.12%, illustrating
the potential of AI in transforming disease management practices, especially in complex
agricultural environments [11].

The improved YOLOv5 model has also shown significant effectiveness in disease man-
agement. Tested on rubber tree diseases, this model achieved an mAP of 70%, representing
a 5.4% improvement over the original YOLOv5 and demonstrating enhanced detection of
diseases like powdery mildew and anthracnose. This case study underscores the model’s
potential for real-time disease management in agriculture, leading to more accurate and
timely identification and intervention [61,62].

Additionally, AI-based systems have proven successful in managing pearl millet
mildew, where transfer learning with pre-trained models like VGGNet achieved an accuracy
of 95% [70]. Another example is the fine-tuning of the InceptionV3 model for disease
recognition in various crops, leading to significant improvements in disease management
practices [71].

Furthermore, AI systems integrated with UAVs have been effectively used to monitor
olive groves for signs of pests and diseases, achieving high accuracy in detecting early
infestations. This precise monitoring enabled the targeted application of pesticides, signifi-
cantly reducing chemical usage and minimizing environmental impact. In wheat fields,
AI-driven real-time disease detection resulted in a 20% reduction in yield losses compared
to traditional methods, highlighting the substantial impact of AI in enhancing crop health
and yield [63].

In Table 7 we summarize the AI algorithms surveyed in this section concerning disease
prediction and recognition. For each algorithm, the relevant use cases are listed, and the
strengths and limitations for each algorithm are given.

Table 7. AI algorithms used in disease prediction and recognition.

AI Algorithm Use Case Strengths Limitations

Vision Transformers (ViT) Detect diseases from crop images Handles large-scale
image processing Requires large datasets for training

LSTM

Time-series analysis for predicting
disease progression based on

historical weather, soil, and plant
health data

Excellent for time-series data,
handles long-term dependencies,

learns patterns over time

Requires large amounts of data,
computationally expensive to train

Few-Shot Learning (FSL) Detect rare diseases with
few samples Reduces data requirements Can be complex to train

PMF+FA Disease detection and crop
health prediction

Reduces uncertainty
in predictions May require domain expertise

YOLOv5 Real-time object detection for
plant disease Extremely fast, high accuracy Trades off some accuracy for speed

Faster R-CNN Object detection and classification
of plant diseases

Accurate for high-quality
image classification Slower compared to YOLO

SSD (Single Shot
Multibox Detector) Image-based disease detection Fast and efficient Less accurate for small objects
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Table 7. Cont.

AI Algorithm Use Case Strengths Limitations

VGGNet Image-based plant
disease classification

Highly accurate, good for
transfer learning Heavy computational load

SVM Classifying disease symptoms
in early stages High accuracy in small datasets Requires carefully tuned parameters

PSO-SVM Hybrid method for
disease detection

Combines strengths of both PSO
and SVM Sensitive to parameter tuning

K-Nearest Neighbors (KNN) Predicts disease spread based on
nearby crops Simple, interpretable Not scalable to large datasets

ANNs Disease detection and
yield forecasting Good for non-linear relationships Prone to overfitting with

small datasets

CNNs Detecting diseases in crops via
image analysis

Very effective for
image-based tasks Needs large, labeled datasets

R-FCN (Region-based Fully
Convolutional Networks)

Image segmentation for
disease detection Combines speed and accuracy Computationally intensive

6. AI in Crop Yield Prediction
6.1. Data-Driven Yield Prediction
6.1.1. AI Algorithms for Predicting Crop Yields Based on Historical Data, Weather
Forecasts, and Soil Conditions

AI algorithms, including SVM, random forests, and artificial neural networks (ANN),
are developed and utilized to predict crop yields by analyzing various input data such
as historical yield data, weather forecasts, soil conditions, and environmental variables.
Feature selection methods like the Relief algorithm are employed to identify the most
relevant features, which are then processed using linear discriminant analysis (LDA) for
dimensionality reduction. This refined data is subsequently processed by models such as
PSO-SVM (particle swarm optimizationand support vector machines), KNN, and random
forest to enhance prediction accuracy [15,72].

The integration of IoT systems further bolsters predictive capabilities by enabling the
continuous collection and analysis of vast amounts of data from sensors and drones. Instru-
ments for the measurement of such key parameters, including soil moisture, temperature,
and humidity, are employed alongside multispectral cameras which capture aerial imagery,
such as vegetation indices (e.g., NDVI). These models provide an all-round and accurate
forecast of crop productivity [16,73] based on real time conditions and historical trends
along with various environmental factors.

This combined use of machine learning techniques and IoT-enhanced data collection
creates a powerful system that delivers valuable insights to farmers, helping them optimize
their agricultural practices for improved yield outcomes [74].

6.1.2. Examples of AI-Based Yield Prediction Models and Their Accuracy

AI models have been shown to provide more accurate crop yield predictions in
modern agriculture, and numerous studies have proven the increased effectiveness of
these methods. These models include a machine learning package, such as the PSO-SVM,
KNN, and random forest components, combined into a fairly elaborate system. The model
performs very well in predicting crop type across crops. Through feature selection and
extraction, particularly using the Relief algorithm [5] and linear discriminant analysis
(LDA), the input data were further refined, resulting in improved model performance. All
these models were tested and the best one for yield prediction was likely found to be the
PSO-SVM, followed by the KNN, due to the high sensitivity value they showed, indicating
strong potential for use in agriculture [15].

In addition to the aforementioned approaches, the integration of IoT-based systems
has further upgraded the predictive capabilities of AI models. Additionally, IoT systems
collect information from other sources, such as high-resolution aerial photography and
multispectral cameras or satellites. The NDVI and quasi-linear autoregressive models are
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typical examples of predicting crop yields. This processing was found to be very effective
in crops such as winter wheat, where it was found to achieve high accuracy, especially
when processing time series data from different stages of the growing season at the same
time. By continuously monitoring crop health and environmental conditions through IoT
devices, such as soil moisture sensors and temperature gauges, these AI models are found
to provide real-time insights and adjustments, and therefore significantly enhance the
overall accuracy of yield predictions [16].

Furthermore, AI-driven models supporting predictive analytics may combine real-
time inputs with historical data, to further enhance yield forecasting accuracy. These models
use advanced image recognition techniques which enable the continuous monitoring of
crop status and health and are able to detect adverse developments, including the lack
of nutrients or pest infestations, at an early stage. This is a crucial task, since it enables
farmers to take actions to minimize potential losses, which results in crop yield prediction.
Additionally, in order to further enhance crop prediction, these models are able to analyze
the complex interplay of various factors, including soil quality, weather patterns, and crop
growth stages, in order to optimize agricultural practices such as irrigation and fertilization.
The predictions of these AI models have been found to be closely aligned with real yields
(based on multiple case studies), validating their predictive accuracy, as well as their
reliability and practicality in real-world agricultural settings [73].

In conclusion, the integration of AI and IoT into crop yield prediction represents a
major advancement in agricultural technology. These systems combine machine learning
algorithms and near real-time data collection to deliver actionable information for decision
making that is both timely and highly accurate. This not only helps in utilizing the
resources to be chosen wisely but also assists decision management concerning the planting,
harvesting, and marketing of crops, leading to enhanced productivity and profitability.

In Table 8 we summarize the AI algorithms surveyed in this section in relation to crop
yield prediction. For each algorithm, the relevant use cases are listed, and the strengths
and limitations for each algorithm are given.

Table 8. AI algorithms for crop yield prediction.

AI Algorithm Use Case Strengths Limitations

LSTM

Time-series analysis for
predicting crop yields based

on historical weather, soil, and
plant health data

Excellent for time-series data,
handles long-term dependencies,

learns patterns over time

Requires large amounts of data,
computationally expensive to train

Random Forest Yield prediction based on
historical data High accuracy, interpretable Data-hungry, sensitive to

data quality

SVMs Yield prediction
High accuracy, works well for

small datasets, effective in
high-dimensional spaces

Computationally expensive for
large datasets, difficult to interpret

PSO-SVM
Forecasting of yields

considering past data and
environmental parameters

Combines strengths of both
PSO and SVM Sensitive to parameter tuning

KNN Estimation of yield Simple, interpretable Not scalable to large datasets

ANNs Yield forecasting Good for non-linear relationships Prone to overfitting with
small datasets

6.2. Integration with Market Data
6.2.1. The Role of AI in Linking Yield Predictions with Market Trends and Prices

The potential of AI in agriculture is not limited to traditional yield forecasting, but it
also impacts the financial aspects of the agricultural sector, by incorporating market trends
and price forecasts into the decision-making process. By using yield predictions, AI helps
align agricultural production with market needs, which is beneficial not only for enhancing
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market efficiency, but also for optimizing pricing strategies. AI gives farmers the ability to
make more informed decisions about planting and harvesting schedules, while at the same
time allowing them to develop targeted marketing strategies for different crop varieties
by providing them with a deeper understanding of the market. This approach ensures
that production is both maximized and strategically planned to meet market needs, hence
reducing market fluctuations and price volatility risks.

These capabilities are enhanced further by the use of integrated frameworks which
combine AI models with IoT systems, since such frameworks are able not only to predict
crop yields, but also to provide detailed predictions of future market trends and price
movements. Furthermore, these AI models combine a wide range of factors, such as
production costs, market demand, and external economic conditions, in order to estimate
future crop prices with high accuracy. For example, Sameh et al. [16] present a framework
which uses AI-based performance predictions combined with current and historical market
data in order to predict future prices. This key feature allows farmers to strategically plan
their sales and marketing efforts, ensuring that they can maximize their profits by taking
advantage of current market conditions.

In addition, with the use of AI models, which are able to analyze historical pricing
data, market trends, and projected returns, farmers can safely navigate volatile markets,
where prices can change rapidly due to supply and demand changes. Furthermore, farmers
can also make strategic decisions, aligning their production with market conditions, thus
enhancing their competitiveness and profitability. For example, AI can suggest that farmers
delay a harvest and/or store products until market conditions improve in times of expected
oversupply, and thus avoid low market prices and potential financial losses [73].

Using AI for financial planning aspects of agriculture enables the sector to bring in
more productive farming practices. AI systems link yield forecasts with financial data,
which enables farmers to plan the growing season and post-harvest, in such a manner that
every step, from planting to marketing, is optimized in order to maximize the possible
output. This solution is particularly useful in highly volatile markets that are very sensitive
and where small fluctuations in supply can lead to significant price changes. The ability
of AI to analyze large amounts of data and accurately predict outcomes enables farmers
to stay ahead of market trends and take proactive measures that ensure their operations
remain profitable and sustainable.

By providing accurate and timely information on expected yields and market condi-
tions, AI helps stabilize supply chains while ensuring that both producers and consumers
benefit from a more balanced and predictable market. This contributes to improving the
efficiency of agricultural markets, but also to food security by ensuring that crops are avail-
able when and where they are needed most. It also helps policy makers and agribusinesses
to anticipate market trends and design interventions that support both producers and
consumers, ultimately leading to a more resilient and sustainable agricultural sector.

In conclusion, incorporating AI into agriculture goes beyond enhancing crop yield
predictions. It is fundamentally transforming the way farmers interact with the market.
As AI technology continues to evolve, it is easy to conclude that its role in connecting
agricultural production with market dynamics will become increasingly critical, driving
the future of smart and financially resilient agriculture [15,16,73].

6.2.2. Impact of AI Predictions on Decision-Making for Farmers and Stakeholders

AI-based forecasting has a profound impact on the decision-making processes of farm-
ers and agricultural stakeholders by providing accurate and timely information that enables
farmers to make well-timed, informed decisions on crop selection, planting schedules, and
necessary inputs to maximize performance. For example, by providing advance forecasting
with potential returns, farmers can redesign their resource allocation, optimize planting
and harvesting times, and ensure they use inputs such as water and fertilizers efficiently.
This precise design not only boosts productivity but also reduces waste, contributing to
more sustainable farming practices. By providing personalized recommendations based on
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each farm’s specific conditions, AI helps farmers improve profitability while enhancing
sustainability [16].

Furthermore, as mentioned above, the impact of AI-driven forecasting extends beyond
individual farms to include wider agricultural actors such as agribusinesses and policy
makers [75]. These stakeholders can use the insights generated by the integration of AI
to better manage supply chains, predict market trends, and design future agricultural
policies. For example, accurate yield forecasts help agribusinesses secure contracts and
negotiate better prices, while policymakers can use this data to design interventions that
mitigate the risks associated with crop failures. This integrated approach ensures that the
entire agricultural sector benefits from improved planning and decision-making processes,
leading to a more resilient and efficient food production system.

7. AI in Price Prediction
7.1. Importance of Price Prediction in Agriculture

Price prediction plays a critical role in ensuring economic and social stability, par-
ticularly in agricultural markets. Frequent and abnormal fluctuations in the prices of
agricultural products can have far-reaching consequences, leading to widespread public
concern, impacting people’s livelihoods, and even potentially causing social unrest [19]. For
countries with large agricultural sectors, such as China, predicting price trends is essential
not only for market stability but also for the overall economic health of the nation. The
capability to forecast prices accurately plays a crucial role in avoiding conflicts in market
prices and—more generally—supporting the smooth operation of the markets.

Additionally, price prediction is a key tool for achieving balanced supply and demand
in the agricultural value chain. Taking into account that prices may exhibit high volatility,
which can place high pressure on either the producers or the consumers, accurate fore-
casting allows for taking timely actions that promote market stability and can alleviate
the impact, protecting the interests of both producers and consumers. The importance of
accurate price prediction is especially important in the following contexts:

• in regions where agriculture is a major area of economic activities, since price volatility
may lead in major economic disturbances [76].

• for the protection and enhancement of the income of smallholder farmers. This class
of farmers can be supported in making better-informed decisions regarding the selling
of their yields, choosing sale periods in which prices are bound to be higher while
avoiding sale periods with reduced prices, and achieving higher resilience against
adverse market fluctuations [77].

Besides its role in ensuring smooth market operations, accurate price prediction also
contributes to ensuring food security. Towards the goal of food affordability and availability
maintenance, governments and national/international organizations may utilize price
predictions to identify indications of potential price surges in a timely fashion and arrange
for suitable interventions [78].

Taking into account the context of global challenges, including population growth
(which leads to increased food demand) and climate change (which increases the volatility
of crop yields), the role of reliable price forecasting in ensuring a stable and secure food
supply [79] is further stressed.

7.2. AI Techniques Used in Price Prediction
Machine Learning Models

Initial attempts at price prediction in agriculture utilized traditional machine learning
models, such as linear regression, SVM, anddecision trees. However, the accuracy that
can be achieved by these models is hindered due to the overall complexity and the high
dimensionality of agricultural data. In particular, while these models have the advantages
of simplicity and interpretability, their capabilities of capturing the complex, non-linear
relationships that are inherent in agricultural data have been proven limited. Consequently,
researchers resorted to more advanced models, such as neural networks [80].
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Machine learning models like ARIMA have been successfully combined with SVM [81]
or decision trees to tackle these shortcomings through the hybrid modeling [82] approach.
Additionally, deep learning techniques, such as LSTM and RNN, allow for the successful
modeling of both linear and non-linear components of agricultural price data, including
sequential dependencies and complex temporal patterns [36,83], and therefore achieve
improved accuracy levels [84,85]. Radial basis function (RBF) models have demonstrated
increased capabilities to adapt to specific features of agricultural products and supplies,
formulating predictions of high accuracy [19]. LSTM networks are especially well-suited
for handling sequential data, making them highly effective in predicting agricultural prices
where patterns are often influenced by seasonal trends [86].

In [87], the authors explore multiple models for predicting prices for agricultural
supplies and products, and assert that random forest and neural networks exhibit the
best performance; price predictions formulated by neural networks exhibit an average
deviation of 6.6%, while the respective predictions formulated by random forests exhibit
higher deviations, 9.8% on average).

Hybrid models combining machine learning and econometric techniques have also
been developed, achieving high forecasting accuracy, especially in contexts with high
complexity, in which individual models fail to capture the influence and interdependence
of the factors. For instance, decomposition-combination models initially dissect complex
data point sequences into smaller components, and then process these smaller components
to generate partial predictions, which are integrated to formulate the final prediction [88].
The VMD-SGMD-LSTM model is an example of a hybrid approach that decomposes data
into simpler components before applying deep learning techniques, resulting in higher
prediction accuracy [76].

Having been trained on extensive datasets, these hybrid models have demonstrated
high accuracy in predicting the prices of vegetables in local markets; in some cases, the
performance of these models surpasses the performance of econometric approaches [77,80].
The use of genetic algorithms to optimize the performance of traditional machine learning
models such as SVM and Bayesian Networks has been also proven fruitful, leading to high
accuracy in agricultural product price prediction [79].

7.3. Data Sources for Price Prediction

AI methods for price prediction depend on the existence of accurate and up-to-date
datasets, which are used to train the relevant models. Data sources should be comprehen-
sive, comprising the widest possible set of factors that affect prices, as well as the prices
themselves. Datasets used for the prediction of price trends are expected to include the
following: (a) historical market prices of agricultural data; (b) crop quantity and quality
statistics; (c) prices of supplies needed in the agricultural process; (d) demand for agri-
cultural products, which does not only concern the food supply chain but additionally
other uses of yields, e.g., biofuel; (e) demand, availability and cost of workforce; and (f) the
amount of land that is used for agricultural product cultivation, preferably broken down in
subcategories such as arable or irrigable land. The completeness, accuracy, and detail of
these data are critical factors to achieve successful AI-based predictions.

Besides factors within the agricultural value chain and the means used therein, sup-
plemental information regarding the environment can play an important role in price
prediction. This information includes aspects such as climate and micro-climate type,
soil conditions, and weather events. These aspects have a high impact on both the quan-
tity and quality of crop yields, therefore directly affecting market prices; the importance
of these data is particularly high in areas with high climate variability and/or intense
weather phenomena.

A final set of factors that should be considered in the context of price prediction
are related to macroeconomic indicators, such as inflation rates and currency exchange
rates. The integration of these factors allows models to capture deeper relationships
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between agricultural product prices and the economic environment, further elevating
prediction accuracy.

Overall, training datasets used for price prediction need to be characterized by two key
attributes: (a) comprehensiveness (accommodating factors within the agricultural value
chain, the physical environment, and the economic environment); and (b) accuracy and a
sufficient level of detail.

7.4. Case Studies and Applications

Prediction of agricultural product prices based on AI models has already been success-
fully applied in a number of cases. For instance, [19] reports on the use of an RBF neural
network model used to predict the prices of garlic and port in China have highlighted its
high rate of accuracy and ability to capture short-term price variabilities. Paul et al. [77]
present hybrid AI models that can be used for predicting the prices of crops including
wheat, rice, and sugarcane; these models exhibit higher performances compared to statisti-
cal methods and enable farmers to increase their profits.

Jaiswal et al. [89] present an RNN-LSTM hybrid model that has been applied to predict
the prices of wheat and maize, as well as other agricultural products. Especially in areas
with high seasonal variability, the application of these models has shown strong potential
to lead farmers to better marketing decisions. Furthermore, Vinson et al. [90] present a
model based on the generalized regression neural network (GRNN) and support vector
regression (SVR), which can successfully predict the prices of fresh foods—especially fruit.

7.5. Challenges in Price Prediction

As noted in Section 7.4, accurate prediction of agricultural product prices necessitates
the availability of comprehensive and accurate datasets; this may constitute a challenge,
especially in less developed regions, where data availability is reduced [79]. Two more
aspects that are inherent to AI models should be catered for, namely the need to (a) capture
all factors and their interdependencies and (b) avoid overfitting.

The application of more complex and sophisticated algorithms may lead to more
accurate predictions, but these predictions have low interpretability, which leads to lower
trust and reduced acceptance potential. This highlights the need for more explainable
and interpretable predictions, which can be comprehended, interpreted, and trusted by all
stakeholders, including farmers, traders, and market analysts [19,78].

Prices are subject to modifications due to external and unforeseeable developments,
such as natural disasters or geopolitical events. While this source of unpredictability cannot
be mitigated due to its very nature, AI-based models should allow for the quick adaptation
of predictions upon occurrence of such events.

As noted above, achieving both high accuracy and high interpretability is a chal-
lenging task, since simple and more interpretable models fail to capture all factors and
dynamics, thus attaining lower accuracy levels, while more complex models have reduced
interpretability. Providing both highly accurate and interpretable/explainable predictions
will enable stakeholders to accept price predictions and trust the actionable insights that
are offered by AI systems [91]. To the same end, blockchain technologies may be employed,
offering a trusted foundation for storing data inputs and outputs in an immutable and
verifiable fashion, minimizing the risk of data manipulation and providing tamper-free
transcripts of predictions [92].

In Table 9 we summarize the AI algorithms surveyed in this section concerning
agricultural product price prediction. For each algorithm, the relevant use cases are listed,
and the strengths and limitations for each algorithm are given.
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Table 9. AI algorithms for price prediction.

AI Algorithm Use Case Strengths Limitations

ARIMA (AutoRegressive
Integrated Moving Average) Time-series price prediction Effective for linear

data, interpretable
Does not handle non-linear

data well

LSTM Forecasting crop prices based
on historical data

Handles long-term
dependencies

High computational cost,
difficult to tune

VMD-SGMD-LSTM
Hybrid method for price

forecasting, improves
LSTM performance

Accurate for complex,
non-linear data

Complex to implement
and maintain

Bayesian Networks Probabilistic modeling for
price prediction

Good for incorporating
uncertainty

Requires expert knowledge
for setup

RNNs Time-series forecasting of
market prices

Good for sequential,
temporal data

Difficult to train on very
long sequences

Generalized Regression
Neural Network (GRNN) Fast, accurate price prediction Works well with small

datasets, easy to train Sensitive to noise in data

Artificial neural networks
Prediction of prices

agricultural products
and supplies

Captures non-linear
relationships

Prone to overfitting with
small datasets

Random forest
Prediction of prices

agricultural products
and supplies

Handles high-dimensional
data well, robust to

overfitting, interpretable

Requires large training
datasets, computationally
intensive for large models

8. AI in Logistics
8.1. AI Applications in Optimizing Supply Chain Processes, Including Storage, Transportation,
and Distribution

AI applications in agricultural logistics include the integration of IoT sensors for
the real-time monitoring of environmental conditions during transportation and storage,
ensuring that products maintain their quality. AI algorithms also optimize transportation
routes by analyzing factors like weather and traffic, reducing delivery times and operational
costs [10]. AI-driven inventory management systems significantly enhance supply chain
efficiency by maintaining optimal stock levels and predicting future demand based on
historical and real-time data. This optimization ensures that agricultural products are
delivered not only at the appropriate times, but also in the right quantities [9]. When
combining AI with machine learning and data analytics, real-time monitoring tools, as well
as optimization of logistics processes tools, such as storage and distribution, are available.
For example, Morales and Elkader [17] present AI systems which are able to optimize
transportation routes, reduce travel time, and minimize costs by taking into account traffic,
weather conditions, and fuel consumption. Furthermore, the integration of AI with digital
twins (DTs) and distributed ledger technology (DLT) enhances decision-making regarding
the processes of storage, transportation, and distribution. As a result, AI is able to analyze
data from IoT sensors to predict the optimal storage practices and logistics operations in
real time [37].

8.2. Case Studies of AI in Reducing Waste and Improving Efficiency in Agricultural Logistics

When applying AI-based systems in cold chain logistics, both temperature and humid-
ity during transportation can be monitored and controlled, significantly reducing spoilage
of perishable items, and thus ensuring that products maintain their quality until they reach
consumers. By optimizing the timing of harvests and coordinating logistics, AI-driven
predictive analytics streamline supply chain operations [93,94]. This reduces the need for
excessive storage and prevents spoilage, which results in minimum waste. The application
of AI techniques in logistics has significantly enhanced efficiency by using IoT devices
which monitor product freshness during transit, ensuring the safe delivery of perishable
goods in optimal condition and reducing spoilage waste. Monitoring the freshness of
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agricultural products in transit helps to reduce waste by rerouting shipments with real-
time data processing and predictive analytics [95]. By implementing this type of systems,
not only is the transparency enhanced, but the possibility of disruptions is also reduced
(Convergence of Distributed Ledger Technologies).

8.3. AI Tools That Help Farmers Access the Market, as Well as Price and Demand Forecasting

AI-driven platforms directly connect farmers with buyers, bypassing traditional in-
termediaries. In order for these platforms to predict market demand and set competitive
prices, and thus help farmers to maximize their profits, they use advanced AI techniques.
The direct connection between farmers and consumers/retailers ensures a streamlined
supply chain, as well as better market access. AI-based platforms make market access a lot
easier, by providing advanced features, such as price prediction and demand forecasting,
etc. These platforms enable farmers to adjust their production strategies based on market
trends, thereby reducing the risk of overproduction, and ensuring that they can sell their
products at optimal prices. AI tools are indispensable for market access, offering precise
demand forecasting and price prediction. By integrating with blockchain technology, these
AI platforms ensure secure and transparent transactions, which helps build trust between
farmers and buyers (Convergence of Distributed Ledger Technologies) [37].

In Table 10 we summarize the AI algorithms surveyed in this section concerning
logistics in the agricultural sector. For each algorithm, the relevant use cases are listed, and
the strengths and limitations for each algorithm are given.

Table 10. AI algorithms for logistics in agriculture.

AI Algorithm Use Case Strengths Limitations

SVM [96] Classifying logistics routes
for efficiency

High accuracy for
classification tasks Not scalable to large datasets

Reinforcement Learning (RL)
[97,98]

Dynamic routing optimization
for minimizing waste

Adapts to real-time changes,
learns optimal behavior

Needs continuous retraining,
computationally expensive

Artificial Neural Networks
[99,100]

Predicting market demand
for crops

Handles complex
relationships

Requires lots of data,
may overfit

Deep Learning (CNNs)
[101,102]

Product classification and
sorting in packaging centers

Very effective for image-
based sorting

High training cost, increased
need for labeled data

9. Challenges and Limitations
9.1. Technical Challenges

The success of AI-driven smart farming heavily depends on the quality of data col-
lected from various sensors, drones, and IoT devices. However, data inconsistencies,
inaccuracies, and gaps can significantly hinder the performance of machine learning mod-
els. The variability of environmental factors such as weather, soil conditions, and crop
types necessitates highly adaptive and context-sensitive algorithms, which are complex to
develop and fine-tune [103].

Moreover, the high computational power required to process large datasets from
UAVs and other sensors remains a hurdle, especially in real-time applications. The inte-
gration of these AI tools with traditional farming systems is often hampered by the lack of
standardized platforms and interoperability issues [104].

AI-based land use planning tools, while highly effective, also face technical challenges.
The integration of topographical data with AI-driven models to simulate various weather
scenarios and predict the most suitable areas for crop cultivation requires sophisticated
machine learning algorithms, which are computationally intensive and require robust
infrastructure that may not be available in all agricultural settings. The algorithms used
in AI systems require substantial computational resources and advanced infrastructure,
which are often unavailable in rural agricultural settings. The integration of AI tools with
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existing agricultural management systems also poses challenges, as most current systems
are not designed to accommodate the complexities of AI technologies [105].

9.2. Economic and Social Barriers

The cost of AI technologies, including the hardware, software, and training needed to
effectively utilize these tools, is often prohibitive for smallholder farmers. This high cost is
a significant deterrent to widespread adoption, particularly in regions where agriculture is
dominated by small-scale operations [106].

Rural areas are challenged by (a) limited internet connectivity and (b) reduced digital
literacy, as compared to large cities. These two factors constitute barriers to the uptake and
use of AI technologies. In turn, this further aggravates the gap between technologically
savvy farmers (typically including large farms) and those with limited digital skills. These
issues must be resolved to allow all farmers to gain access to tools that support advanced
and efficient farming operations [105,107].

This digital divide extends to the availability of AI-driven tools for resource manage-
ment, which are only accessible in a subset of farming installations, typically those where
considerable capital investments in advanced technologies can be made [8]. Again, the
lack of the potential to use advanced tools widens the gap between farmers that are able to
uptake AI tools and farmers that are not.

9.3. Ethical Considerations

The ethical concerns around the deployment of AI in agriculture are related to data
privacy, job displacement, and the transparency of AI systems. The large-scale generation
and exploitation of agricultural data induces significant privacy concerns, particularly in
terms of ownership or such information and considering who has permissions to share
it [108,109].

The use of AI to automate farming activities may also have potential impact on the
workforce in rural areas, especially in ones where large portions of the population are
engaged in agriculture. Displaced workers should be offered the possibility to re-train and
re-target their professional careers; allowances may need to be allocated to support workers
during the re-targeting period, in order to avoid abrupt socio-economic changes.

Currently, many AI systems operate as “black boxes”, offering results that are difficult
to interpret and associate with input data. This may constitute a barrier that limits the
uptake of AI-based systems or the adoption of the suggestions they offer; consequently, the
aspects of explainability and interpretability of AI systems need to be strengthened.

Further, the use of AI-based in land use planning and crop selection gives rise to ethical
concerns about algorithmic bias and overall fairness of AI-provided land use planning.
These tools generate recommendations based on their training datasets, and these datasets
may be compiled in such a way that some choices are over-represented while others are
under-represented. As a result, the algorithm will have a tendency to generate proposals
where the former class of choices is more prevalent, effectively marginalizing plants in the
latter class and hindering biodiversity [7].

Addressing ethical considerations is vital for the responsible and fair deployment of
AI in agriculture. Developing AI technologies that are transparent, inclusive, and context-
sensitive, as well as responsive to the socio-economic environments within which they
operate, is of high importance to ensure cooperation by stakeholders and enable them to
build trust towards AI-based systems [18].

10. Future Prospects and Innovations
10.1. Emerging Trends
10.1.1. Advancements in AI and Combination with Other Technologies

AI has already demonstrated a substantial impact in the agricultural value chain,
exploiting advancements in deep learning, as well as technologies like blockchain, IoT,
and robotics. Deep learning techniques, such as CNN and RNN, are used to detect crop
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diseases and predict yield. The integration of blockchain technologies with AI can offer a
secure and transparent platform on which input data utilized for model training, as well as
results and predictions, can be stored, increasing trust and neutralizing fraud threats.

In conjunction with IoT devices that gather rich and ongoing data on the weather, soil
traits, crop health etc., AI algorithms can be fed with real-time data streams of information,
which can then be analyzed to provide stakeholders with actionable insights, further
supporting process efficiency throughout the agricultural value chain [2,18].

Using the data acquired from NDVI and satellite sources to plan crop rotation with
AI enhances predictions of optimized sequences, achieving soil quality improvement and
ultimately improved yield, while minimizing environmental consequences [1].

In addition, multi-layer perceptron (MLP)-based neural networks, coupled with real-
time, IoT-sourced data streams, offer potential for evaluating land suitability for agriculture.
Using these models, land suitability is divided into different types to perform automatic
data collection and provide a more accurate and efficient performance for different agricul-
tural operations [43].

Further potential can be identified in the field of weeding devices. Currently, these
devices utilize neural networks for weed detection and mechanical systems that can apply
the appropriate amount of pesticide to increase precision in eradication and decrease
greenhouse-gas emissions [5]. Advancement in detection algorithms can allow the use of
weeding devices in cultivations where the error margin for weed detection is currently high
due to the similarity between cultivated plants and pests. More generally, machine vision
systems in AI-driven robotics can be applied in crop monitoring, weeding, and harvesting,
promoting automation (and thereby minimizing labor needs) while reducing the use of
chemicals, and ultimately increasing sustainability [110].

Considering the use of AI in resource management, the incorporation of high-order
linear models, i.e., LSTM and extreme gradient boosting (XGBoost), into irrigation systems
has proven effective for computing the optimal water quantity to be administered during
irrigation. These AI models are fed with IoT-sourced data streams, which provide infor-
mation on soil moisture, weather and solar radiation, and formulate optimal irrigation
scheduling policies that maximize crop yields, utilizing available resources efficiently [111].

AI-powered plant disease detection and classification has been applied with satisfac-
tory results in a number of cases [112,113]. CNNs can be utilized for early diagnosis of
plant diseases, while transfer learning can be used in order to capitalize models that have
been developed for particular plants and/or locations to detect specific plant diseases either
(a) on different plant types or (b) on the same plant types, cultivated in different locations
or conditions. Still, models trained for specific plant types, locations, and conditions are
considerably more efficient than transfer learning-based models or generic models. The
creation of models that would provide high detection efficiency without the need for train-
ing with data for specific cultivations and identical (or similar) conditions would enable
the direct application of models to any type of cultivation.

In the domain of agricultural products price prediction, enhanced RBF neural networks
support complex conditions such as those characterizing by agriculture markets and assist
more accurate decisions about production and market strategies [19]. The widening of
the factors that are taken into account and the development of algorithms that can rapidly
adapt to unforeseen developments (e.g., natural disasters) are two indicative directions
that will be pursued in this area.

For many aspects of logistics and supply chain management (L&SCM), AI-driven
models can optimize transportation routes by taking advantage of technologies such as
generative adversarial networks (GANs) and reinforcement learning, achieving reduced
costs and also limiting environmental impact [9]. In parallel, IoT sensors can provide
real-time information on the condition of the merchandise, supporting the appropriate
conditioning of the environment during transportation.
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10.1.2. Use of AI in Sustainable Agriculture and Addressing Global Food Security

AI makes a fundamental contribution to the solution of global food security through
agricultural practice optimization. In this context, machine learning algorithms process
historical data and weather patterns to propose the most suitable crops or crop mixtures that
should be planted, resulting in high-value yields and ensuring food security. Such systems
also help reduce the effects of climate change in agriculture; they provide predictions on
adverse weather, thereby suggesting several adaptive farming schemes. These systems
aid sustainable agriculture by optimizing the use of resources, mitigating environmental
impact, and enhancing crop productivity [1,2,7]. Land use optimization and crop selection
necessitate the application of advance predictive modeling, especially in arid regions; AI
plays can be a key driver for the implementation of relevant tools and the formulation of
successful recommendations. AI can help farmers to optimize yields and use resources
effectively by processing real-time data sourced from IoT sensors and offering actionable
insights to stakeholders [43].

The crop yield prediction frameworks, built on advanced machine learning algorithms,
help create a system that provides accurate and timely predictions of agricultural output.
These technologies are especially critical in areas where agriculture is highly vulnerable
to volatile weather and scarce resources. AI systems combine data on the environment
with predictive analytics to help optimize the use of water, fertilizers, and other inputs,
making agriculture more sustainable and less wasteful and allowing food production to
better support global growth.

10.2. Policy and Regulation
10.2.1. The Role of Governments and International Organizations in Fostering AI Adoption
in Agriculture

The promotion and uptake levels of AI in the agricultural value chain are moderated,
to a large extent, by activities organized by governments and international organizations.
These bodies provide funding to support research and development, create infrastructure
for precision agriculture, raise awareness of the benefits of the use of AI in the agricultural
value chain, and provide incentives for investment in the use of AI, notably through
support to public-private partnerships that act as a catalyst for the adoption of AI. Finally,
these bodies accelerate knowledge exchange between stakeholders in different countries
and/or stages within the agricultural value chain, while also formulating global standards
to promote cooperation, innovation, interoperability, transparency, comparability, and
consistency [114,115].

Government involvement is particularly important for areas where agriculture is
the main economic activity or is deemed critical for ensuring food security. Government
intervention can also regulate issues related to the accountable and ethical use of AI-based
tools, and ensure access to AI technologies to a wide range of stakeholders.

10.2.2. Recommendations for Policies to Support AI Innovation and Address Challenges

AI is a powerful and invaluable tool for the agricultural value chain, yet a number of
issues including data privacy, inequitable access to AI tools, and ethical and responsible use
of AI need to be considered. To this end, governments and regulatory bodies need to create
and operationalize rules and guidelines for the use of AI in agriculture that safeguard
stakeholders’ privacy and ensure responsible and ethical use of AI’s potential. More-
over, open data repositories may be created and populated, facilitating collaboration and
open innovation.

Raising awareness and promoting digital literacy among stakeholders throughout
the agricultural value chain is another intervention area for governments and bodies. In
this line, farmers can be informed regarding the potential benefits of AI technologies,
and training sessions can be organized to elevate digital skills and use of specific AI-
based tools. Incentives can be also provided to allow low-income farmers to invest on AI
technologies [116]. Unions and cooperatives may also contribute towards this goal.
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Lastly, establishing public-private partnerships can be a key factor in driving the adop-
tion of AI technologies in agriculture. Governments and international organizations also
have a role in supporting partnerships between AI developers, agronomists, and farmers to
design AI models and algorithms according to the conditions of each agricultural environ-
ment. Through these partnerships, it will be possible to accelerate AI adoption, overcoming
barriers, increasing innovation, and contributing to sustainable farming practices and
global food security [117].

11. Use Cases

In this section, we present use cases of real-world applications, which have uti-
lized AI algorithms in order to support and optimize different phases of the agriculture
value chain. These use cases demonstrate the value and potential of AI algorithms in
precision agriculture.

Pereira et al. [118] report on a progressive web application (PWA) designed to detect
plant diseases, utilizing CNNs. The application was deployed and used in India, providing
an accessible and effective tool for farmers who may lack technical expertise or consistent
internet access, which is often necessary for diagnostic tools. Two CNN architectures were
investigated for this application: AlexNet, which was trained from scratch on a dataset of
diseased and healthy crop leaves, and ResNet50, which was implemented using a transfer
learning approach with pretrained weights. ResNet50 outperformed AlexNet, achieving a
validation accuracy of 96%, compared to AlexNet’s 84%, largely due to ResNet50’s deeper
architecture and the use of skip connections, which mitigates performance degradation in
deep networks. The application was built using ReactJS and the TensorFlow.js library—with
the model stored locally using IndexedDB, an API that allows for user-side storage—to
ensure offline functionality, addressing connectivity issues which commonly arise in rural
areas. When users upload or capture an image of a plant leaf, the application processes
it, normalizes the image, and displays the top five predicted diseases, with the result
with the highest confidence first. This system design optimizes usability and accuracy for
users with limited technology knowledge. To improve the robustness and usability of the
application, proposed updates include training the model on a more diverse set of images
that reflect real-world conditions such as different lighting, adding multilingual support
for wider regional application, and incorporating disease treatment recommendations.
These proposed updates aim to increase the utility and relevance of the tool for end users,
ultimately helping farmers manage plant health more effectively.

A smart irrigation system was designed to improve water management in rice fields in
Taiwan, where climate change and an aging rural population are exacerbating water short-
ages [119]. This system incorporates IoT technology to automate and optimize irrigation
processes. The system was tested in Tainan City, Taiwan, an area that is representative of the
agricultural conditions of most of the country. The system was designed and implemented
to monitor environmental conditions (e.g., water levels, weather data) using sensors, adjust
irrigation levels based on these measurements, and provide remote access via a cloud-
based platform and mobile app. The system is organized into three main components:
(a) a sensing layer with sensors to collect real-time data on water level and weather; (b) a
network layer that transmits data using NB-IoT, which is a low-power network; and (c) an
application layer that allows remote monitoring and control via mobile devices. The system
enables farmers to manage water levels remotely. The system was implemented with three
irrigation methods: the traditional continuous flooding (CP) method and two modified
methods (MCP1 and MCP2), which alternate flooding and drying to reduce water needs.
The results showed that MCP1 and MCP2 achieved significant water savings, with rates
of 2.9–18.7% during the dry season and 8.8%-19.3% during the wet season. Importantly,
this water saving did not negatively affect crop yields or agronomic characteristics. In
fact, the MCP methods resulted in equal or better yields in some cases, highlighting the
feasibility of reducing water use without sacrificing productivity. Future recommendations
include incorporating more advanced artificial intelligence and big data methods into the
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system, to further improve predictive irrigation strategies and potentially increase yield.
This intelligent irrigation system therefore holds promise for addressing water scarcity and
labor challenges in Taiwanese agriculture, offering a model for sustainable water use in
other regions facing similar challenges.

Qaswar et al. [120] report on the use of AI-based methods to optimize the use of
nitrogen fertilizers in potato cultivation. Given that excessive nitrogen (N) application is
common in agriculture, especially in nutrient-demanding crops such as potatoes, the work
in [120] seeks to tailor nitrogen application to specific areas, potentially reducing input costs
and environmental impacts, while maintaining or increasing crop yields. The method was
applied in a commercial potato field in Belgium, where soil properties such as moisture,
pH, total organic carbon, and other nutrients were mapped using visible and near-infrared
(Vis-NIR) spectroscopy. These data were combined with vegetation indices from Sentinel-2
satellite images to define fertility-based management zones (MZs), which were categorized
as high (VR-H), medium-high (VR-MH), medium-low (VR-ML), and low fertility (VR-L).
The demarcation of management zones was performed using the k-means algorithm, where
clustering was based on the predicted soil properties and normalized difference vegetation
index (NDVI). Nitrogen application was adjusted according to the individual zone fertility
categorization: high-fertility zones received 50% less N than the uniform rate (UR), while
low-fertility zones received 50% more. VR-N application showed clear benefits over the
UR treatment. The application of this method resulted in an increase in potato yield of
1.89 tons per hectare and improved the relative gross margin by 374.83 euros per hectare.
Specifically, the highest yield increase was observed in the medium-low fertility zone
(VR-ML), which received 25% more nitrogen than the UR. Environmental analysis showed
improved nitrogen use efficiency in variable-rate nitrogen treatments, suggesting that crops
used nitrogen more efficiently when application rates matched field variability. However,
in the low fertility zone (VR-L), a 50% increase in N did not significantly enhance yield,
indicating reduced yields at higher levels of nitrogen input in less fertile areas. The same
study reports on the development of Vis-NIR calibration models for soil MC, pH, TOC,
P, K, Mg, Ca, and cation exchange capacity (CEC), using partial least squares regression
(PLSR). The authors of [120] suggest that further improvement of decision-making for
nitrogen application in specific zones is feasible through the incorporation of nitrogen
mineralization rates and historical crop yield. This could help prevent excessive nitrogen
application in zones where increased fertilizer use is not associated with yield benefits. The
work in [120] demonstrates the potential of AI-based precision agriculture technologies to
increase profitability and reduce environmental impacts, demonstrating a strong case for
VR-N as a sustainable solution in intensive potato cultivation.

Pang et al. [121] report on a random forest regression (RFR)-based application to
predict wheat yields at both regional and local scales in southeastern Australia, encom-
passing paddocks in Victoria, New South Wales, and South Australia. The application
uses high-resolution normalized difference vegetation index (NDVI) data obtained from
PlanetScope satellite imagery, combined with meteorological data, to develop data-driven,
scalable models for yield prediction. The RFR model provides valuable insights for preci-
sion agriculture, particularly for making informed decisions about variable rate fertilization,
irrigation, and resource management, thereby enabling early in-season yield estimates.
For local predictions, the RFR model combined data across all paddocks, achieving high
prediction accuracy (R2 = 0.86, root mean square error (RMSE) = 0.18 tons per hectare
(t/ha)). At the local scale (individual paddock), the model performed best in Victoria
(R2 = 0.89, RMSE = 0.15 t/ha) and New South Wales (R2 = 0.87, RMSE = 0.07 t/ha), with
moderate performance in South Australia (R2 = 0.45, RMSE = 0.25 t/ha). The differences in
accuracy between regions are attributed to variations in soil characteristics, topography,
and crop variety, which increase yield prediction complexity. Feature importance analysis
identified NDVI data as the most critical for accurate yield predictions. These time-related
insights reflect the relationship between maximum biomass and final yield, particularly
during sensitive growth stages; on the contrary, meteorological variables were found to
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contribute little to the model performance, suggesting that NDVI adequately captures
plant health and growth conditions under non-extreme environmental conditions. Future
research may enhance the adaptability of the model by incorporating additional vegetation
indices, such as chlorophyll content indices, which may offer improved yield sensitivity. It
is also suggested that the approach be extended to other growing seasons and additional
paddocks to test its robustness under different climatic conditions. The research in [121] as-
serts that RFR models operating on top of large datasets offering diverse feature selections,
which are sourced from satellite imagery and IoT devices, can be successfully deployed for
operational, spatially detailed wheat yield predictions, effectively supporting farmers in
the context of the precision agriculture value chain.

12. Discussion

The agricultural value chain comprises multiple stages, including the planning of field
use, sawing, cultivation, disease prevention, detection and treating, processing, storage,
transportation, and distribution of agricultural products. Each of these stages is inher-
ently complex and requires a substantial amount of expertise, while the diversity and
interdependence of these steps introduce additional barriers to the overall optimization
of the agricultural processes. AI systems provide a means to formulate optimal agricul-
tural process plans, streamlining the related processes, reducing waste, and improving
the value chain efficiency both at the global level and at the individual stage level. To this
end, AI technologies are combined with developments in the IoT, robotics, blockchain,
and other areas to offer seamless, secure end-to-end solutions that address the needs of
all stakeholders.

While significant progress has been achieved thus far and AI-based systems are already
employed successfully in a number of cases, further research and development are required
to improve existing solutions, promote the integration of solutions concerning different
stages of the agricultural value chain, and address newly emerging needs and trends:

• Improved Crop Selection and Rotation Planning: Further enhancement of AI powered
models such as gradient boosted decision trees (GBDT) and LSTM networks can offer
more successful and targeted recommendations concerning the choice of plants to be
cultivated in given fields, across sequences of growing seasons.

• Improved AI-Enabled Robotics: Current developments in the field of autonomous
farming robots, which are packed with cutting-edge machine vision and deep learning
capabilities, will be advanced to offer higher precision during weeding and harvesting,
while still reducing labor requirements and supporting sustainable farming practices.

• Expansion of AI in Agricultural Logistics: The combination of blockchain technology,
explainable/interpretable AI, and IoT systems unveils new opportunities for (a) in-
creased transparency in the supply chain, (b) optimization of transportation routes,
and (c) potential access to more profitable markets. In this context, waste can be
minimized, chain efficiency can be improved, and stronger guarantees can be offered
regarding the quality of products reaching the final consumer, while farmers will have
opportunities to increase their income. The combination of these technologies can also
be a key driver for successful implementation of circular economy principles to the
agricultural value chain.

• Addressing Ethical and Social Challenges: Future research has to ensure that AI
technologies are transparent, equitable, and accessible for all stakeholders, including
those in rural areas or under-privileged contexts. This necessitates the formulation
and application of policies on safeguarding data privacy, digital literacy, and reduc-
ing the digital divide to ensure that the benefits of AI are distributed more fairly
across stakeholders.

Finally, we can gain a more complete picture of the AI algorithms that now enable
farmers and those involved in the agricultural sector to use new and continuously evolving
technologies. The following summary table serves as a guide, showing the algorithms
corresponding to the domains in which they can be applied.
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Table 11 summarizes the AI algorithms and the areas of the agricultural sector they
can be applied to. Neural network-based algorithms are grouped at the end of the table, to
facilitate correlation.

Table 11. Table of AI algorithms and the domains of the agricultural sector they can be applied to.
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Random Forest ✓ ✓ ✓ ✓

SVM ✓ ✓ ✓ ✓ ✓

LSTM ✓ ✓ ✓ ✓

Gradient Boosted Decision Trees (GBDT) ✓

Deep Q-Networks (DQNs) ✓

Dominance-based Rough Set Approach (DRSA) ✓

Multi-Layer Perceptron (MLP) ✓

XAI-CROP ✓

Particle Swarm Optimization (PSO) ✓ ✓

Gradient Boosting Machines (GBM) ✓

YOLOv5 ✓

Faster R-CNN ✓ ✓

SSD (Single Shot Multibox Detector) ✓

VGGNet ✓

Vision Transformers (ViT) ✓

Few-Shot Learning (FSL) ✓

PMF+FA ✓

KNN ✓ ✓

PSO-SVM ✓ ✓

Reinforcement Learning (RL) ✓

Bayesian Networks ✓

ARIMA ✓

VMD-SGMD-LSTM ✓

ANN ✓ ✓ ✓ ✓

Generalized Regression Neural Network (GRNN) ✓

CNNs ✓ ✓ ✓ ✓ ✓

RNNs ✓ ✓ ✓ ✓

R-FCN (Region-based Fully Convolutional Networks) ✓
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At this point, and based on the preceding analysis, the conclusions related to the
research objectives posed in the introduction can be stated as follows:

• RO1. To explore how can AI-based tools improve land use planning and crop selection
to enhance agricultural productivity and sustainability.
AI-based tools improve land use planning by analyzing soil quality, weather patterns,
and topography, allowing farmers to make informed decisions about land allocation.
Machine learning models like SVMs and decision trees help predict soil health and
identify the most suitable areas for specific crops. AI-driven crop selection methods,
such as gradient boosted decision trees (GBDT) and regularized greedy forest (RGF),
offer more accurate recommendations, optimizing crop selection and rotation planning
to maximize yield and sustainability.

• RO2. To identify which are the most effective AI-driven strategies for optimizing re-
source management, including water use, fertilizer application, and energy efficiency.
AI-driven strategies optimize resource management by utilizing real-time data from
IoT sensors and advanced machine learning models to manage water, fertilizers, and
energy efficiently. For instance, AI-driven irrigation systems use soil moisture data and
weather forecasts to adjust water distribution, minimizing waste and enhancing crop
health. AI models also optimize fertilizer application based on crop growth stages,
reducing environmental impact while maximizing yield. In greenhouse operations,
AI optimizes energy use by adjusting heating, lighting, and ventilation, leading to
significant reductions in energy consumption.

• RO3. To determine and document how AI contributes to precision agriculture, partic-
ularly in optimizing planting schedules, irrigation, and crop monitoring.
AI contributes to precision agriculture by analyzing vast datasets, including historical
climate data and real-time weather forecasts, to predict optimal planting schedules.
AI-driven systems like those integrated with 6G-enabled IoT networks manage irriga-
tion with precision, ensuring optimal water distribution based on real-time soil and
weather data. For crop monitoring, AI models process data from drones and sensors
to detect early signs of stress, enabling timely interventions that prevent yield losses
and maintain crop health.

• RO4. To highlight the potential benefits of AI in early disease detection and yield
prediction, and establish whether these applications can contribute to the mitigation
of risks in agriculture.
AI enhances early disease detection through advanced image recognition systems that
utilize CNNs and transfer learning. These systems can identify plant diseases with
high accuracy, allowing for timely interventions that prevent crop losses. In yield
prediction, AI models analyze historical data, weather patterns, and soil conditions to
forecast crop yields accurately. These predictions help farmers optimize their practices
and make informed decisions, reducing risks associated with unpredictable weather
and resource limitations.

• RO5. To survey how AI can be integrated into agricultural logistics to reduce waste,
improve efficiency, and enhance market access for farmers.
AI can be integrated into agricultural logistics by optimizing supply chain processes,
including storage, transportation, and distribution. AI-driven systems monitor envi-
ronmental conditions during transportation to ensuring product quality, and optimize
routes to reduce delivery times and costs. AI platforms also facilitate market access
for farmers by providing demand forecasting and price prediction, enabling them to
align production with market trends and maximize profitability. The integration of
blockchain with AI further enhances transparency and trust in the supply chain.

• RO6. To identify the future prospects for AI in transforming the agricultural value
chain, and the challenges that must be addressed to realize its full potential.
The future prospects for AI in agriculture are promising, with continued advancements
expected in areas such as crop selection, robotics, and logistics. However, realizing AI’s
full potential requires addressing challenges related to data privacy, the digital divide,
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and the ethical use of AI technologies. Governments and international organizations
must establish supportive policies, promote digital literacy, and ensure equitable
access to AI tools. By overcoming these challenges, AI can significantly transform the
agricultural value chain, enhancing productivity, sustainability, and food security on a
global scale.

13. Conclusions

In conclusion, the future of agriculture depends on the successful integration of cutting-
edge technologies, mainly including AI and IoT. This is corroborated through the multiple
successful implementations of precision agriculture, which process IoT-sourced data using
AI algorithms, providing farmers with actionable insights.

As AI technology continues to evolve, it will play an increasingly critical role in en-
suring food security and meeting the global demand for food. However, fully exploiting
the potential of AI in agriculture requires addressing technical, economic, and ethical chal-
lenges associated with its adoption. With strong support from governments, international
organizations, and the private sector, AI has the potential to transform agriculture into a
more efficient, sustainable, and resilient industry.

This work lays the foundation for further research and development in expanding the
integration of AI, developing new algorithms and improving existing ones, and encourag-
ing interdisciplinary collaboration and innovation.

In addition, the paper examines the integration of AI across the spectrum of smart
agriculture, from selecting the right farm, seeds, and the right time to start the cultivation
process, to placing the product on the shelf, providing an integrated approach. In doing so,
it highlights how advanced technologies can contribute to solving issues throughout the
production and distribution of agricultural products, providing a road map for researchers,
policy makers, and practitioners to develop and implement effective strategies.
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